Problem Sheet 4 Additional Questions

9. Alternative proof asymptotic result for $\sum_{1 \leq n \leq x} 2^{\omega(n)}$.

Recall $2^{\omega}=1 * Q_{2}$. In the notes we derived

$$
\sum_{n \leq x} 2^{\omega(n)}=\frac{1}{\zeta(2)} x \log x+O(x)
$$

from the expression

$$
\sum_{n \leq x} 2^{\omega(n)}=\sum_{a \leq x} Q_{2}(a) \sum_{b<x / a} 1=\sum_{a \leq x} Q_{2}(a)\left[\frac{x}{a}\right]
$$

Do this in an alternative manner, starting from

$$
\sum_{1 \leq n \leq x} 2^{\omega(n)}=\sum_{1 \leq a \leq x} \sum_{1 \leq b<x / a} Q_{2}(b)
$$

10. Alternative proof asymptotic result for $\sum_{1 \leq n \leq x} d\left(n^{2}\right)$.
i) Prove that

$$
\begin{equation*}
\sum_{n \leq x} \frac{\log (x / n)}{n}=\frac{1}{2} \log ^{2} x+O(\log x) \tag{18}
\end{equation*}
$$

Hint write $\log (x / n)$ as an integral and then interchange summation and integration.
ii) Recall $d\left(n^{2}\right)=\left(1 * 2^{\omega}\right)(n)$. In the notes we proved Theorem 4.12.

$$
\sum_{n \leq x} d\left(n^{2}\right)=\frac{1}{2 \zeta(2)} x \log ^{2} x+O(x \log x)
$$

by starting from

$$
\sum_{n \leq x} d\left(n^{2}\right)=\sum_{a \leq x} 2^{\omega(a)} \sum_{b \leq x / a} 1
$$

Do this in an alternative manner, starting from

$$
\sum_{1 \leq n \leq x} d\left(n^{2}\right)=\sum_{1 \leq a \leq x} \sum_{1 \leq b<x / a} 2^{\omega(b)}
$$

and using Theorem 4.8.
11. Alternative proof asymptotic result for $\sum_{1 \leq n \leq x} d^{2}(n)$.

Prove

$$
\sum_{1 \leq n \leq x} d^{2}(n)=\frac{1}{6 \zeta(2)} x \log ^{3} x+O\left(x \log ^{2} x\right)
$$

starting from the Convolution Method in the form

$$
\sum_{1 \leq n \leq x} d^{2}(n)=\sum_{1 \leq a \leq x} \sum_{1 \leq b \leq x / a} d\left(b^{2}\right)
$$

Hint On Problem Sheet 2 you were asked to generalise (18) above, and prove

$$
\begin{equation*}
\sum_{1 \leq n \leq x} \frac{\log ^{\ell}(x / n)}{n}=\frac{1}{\ell+1} \log ^{\ell+1} x+O\left(\log ^{\ell} x\right) \tag{19}
\end{equation*}
$$

for any integer $\ell \geq 1$.
12. Define the arithmetic function k by $k(1)=1$ and, for $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$ a product of distinct primes, $k(n)=a_{1} a_{2} \ldots a_{r}$, the product of the exponents.

Prove that

$$
\sum_{n=1}^{\infty} \frac{k(n)}{n^{s}}=\frac{\zeta(s) \zeta(2 s) \zeta(3 s)}{\zeta(6 s)}
$$

for $\operatorname{Re} s>1$.
b. Let q_{2} be the characteristic function of square-full numbers, so $q_{2}(1)=1$ and, for $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$ a product of distinct primes, $q_{2}(n)=1$ if all $a_{i} \geq 2$, and $q_{2}(n)=0$ if some $a_{i}=1$.

Prove that $k=1 * q_{2}$.
c. Prove that

$$
\sum_{n \leq x} \frac{q_{2}(n)}{n}=\zeta(2) \frac{\zeta(3)}{\zeta(6)}+O\left(\frac{1}{\sqrt{x}}\right) .
$$

Hint Do not use Partial summation on the previous question but start from

$$
\sum_{n \leq x} \frac{q_{2}(n)}{n}=\sum_{d \leq x} \frac{h(d)}{d} \sum_{a \leq x / d} \frac{s q(a)}{a}
$$

d. Prove that

$$
\sum_{n \leq x} k(n)=\frac{\zeta(2) \zeta(3)}{\zeta(6)} x+O(\sqrt{x})
$$

